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Abstract

Weed control decisions are modeled in an endogenous risk framework where a producer invests in self-insurance and self-protection to
reduce the severity of a realized pest infestation, or reduce the likelihood the infestation occurs. Self-insurance and self-protection are
risk-reducing technologies that capture both the type and quantity of herbicides used. We supply conditions to unambiguously sign the
effects of an increase in the probability of application or effectiveness failure and increased application or effectiveness uncertainty on
optimal herbicide choices. If self-protection and self-insurance are stochastic substitutes, non-point source pollution policies targeted to
reduce herbicide loadings can increase the use of more persistent herbicides. Policies that decrease loadings by reducing total mass may
induce a substitution to herbicides more damaging or more likely to be transported to sensitive areas.

1. Introduction

Economists have argued that pesticides act as
market insurance against uncertain crop damage. Un-
certainty induces a risk-averse producer to use more
pesticides than he would otherwise use to transfer
wealth from good to bad states of nature (see, for
example, Norgaard, 1976, and Feder, 1979). But
Pannell (1990, 1991) has questioned this view. Using
a damage function supported by agronomic evidence
on weed control, Pannell demonstrated that uncer-
tainty might decrease herbicide use for a risk-averse
producer. Pannell points out that uncertainty about
variables such as output price and yields may indeed
lead to lower optimal levels of pesticide use. How-
ever, using a damage function supported by agro-
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nomic evidence on weed control, uncertainty about
variables such as pest density and pest mortality lead
to higher optimal levels of pesticide use. This sug-
gests that other reasons beyond market insurance
may exist to explain pesticide use under uncertainty
—an argument supported by Deen et al. (1993) who
show that only extremely risk-averse producers in-
crease herbicide use under uncertainty.

This paper offers another perspective for pesticide
use under uncertainty—endogenous risk. At the most
fundamental level, endogenous risk redefines the
standard view of pesticide use that generally pre-
sumes that the likelihood of weed damage is beyond
the control of a producer. Endogenous risk implies
that a producer can invest resources in risk-reducing
technologies that influence the expected economic
consequences of the hazards he or she confronts.
This realization has profound impacts on formal
evaluation of weed control strategies and the subse-
quent environmental impacts which have been tradi-
tionally driven by an assumption of exogenous risk.
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Indeed, outside the field of economics, discussions
of risk typically consider actions that modify events
or reduce the vulnerability to loss (Kates, 1978).
Note that we follow this substantial literature on
environmental damages, and define ‘risk’ as the
probability times the severity of damages, not as the
variability of expected wealth (see, for example,
Burton et al., 1979). The main purpose of the en-
dogenous risk approach is to break the mind-set that
equates the probability distribution of outcomes with
the probability distribution of states. Both outcomes
and the lotteries that define these outcomes depend
on a producer’s actions.

Two decades ago Ehrlich and Becker (1972) de-
fined the two basic technologies of endogenous risk
—self-protection and self-insurance. Self-protection
reduces the probability of an undesired state of the
world, while self-insurance reduces the severity if
the state occurs. Since their seminal article, re-
searchers have explored how choice under risk is
affected by the opportunity to reduce risk using
self-protection and self-insurance. Examples include
Hiebert (1983), Boyer and Dionne (1983), Chang
and Ehrlich (1985), Shogren and Crocker (1991),
among others. One general conclusion is that the
endogenous risk model allows for a broader range of
behavior than does the standard exogenous risk
model. This broader, less constrained range of be-
havior exists because models with endogenous risk
assume preferences over both outcomes and the lot-
teries that define these outcomes (Shogren, 1991).
As a consequence, endogenous risk captures the
precise factor of interest in weed control strategies—
the technology of risk reduction.

Our approach adapts the concepts of self-protec-
tion and self-insurance to weed control decisions.
From an endogenous risk perspective, weed control
is viewed as a risk-reduction technology aimed at
decreasing the expected damage from pest infesta-
tion. Whereas previous studies have focused primar-
ily on herbicide application rates and have not ad-
dressed the complexity in producers’ choices of crop
protection technologies, ? the endogenous risk ap-
proach provides a theoretical setting to capture some

% See for example, Osteen and Kuchler (1986), Burton and
Martin (1987), Taylor et al. (1991), Richardson et al. (1991).

of this complexity. Some of the weed control factors
that might be considered in the endogenous risk
setting include herbicide types and quantities, appli-
cation timings, cultivation methods and timings, and
crop rotations. > In this analysis we focus on three of
these factors: herbicide application rate, herbicide
timing flexibility, and herbicide persistence. In mod-
eling herbicide application rates as investments in
self-insurance which decreases the magnitude of yield
loss, and modeling herbicide timing flexibility or
herbicide persistence as investments in self-protec-
tion which reduces the probability of a loss, we
capture both the type and quantity of herbicide used.
This allows us to consider the substitution between
rate and persistence and between rate and timing
flexibility, and it allows us to consider how this
substitution is affected by increased uncertainty re-
garding the efficacy of alternative weed control
strategies. We supply conditions to unambiguously
sign the effects of increased application or effective-
ness risk on these optimal herbicide choices. Since a
producer can replace a herbicide with a high applica-
tion rate but low persistence for another with a low
rate and high persistence, modeling these substitution
possibilities is vital for a better understanding of
producer decisions and more effective non-point
source pollution policy.

Hirshleifer (1970) and other economists have ar-
gued it is always possible to redefine a problem such
that the state of nature is independent of a producer’s
actions. This position allows one, as Laffont (1980)
noted, to continue working within the highly tractable
framework of exogenous risk. But as Ehrlich and
Becker (1972) point out, ‘‘a search for state probabil-
ities that are independent of human action would be
self-defeating”” (p. 638). Consider a situation in
which weed infestation threatens a producer’s crop.
The probability and severity of weed damage can be
altered if the producer selects an appropriate weed
control strategy. An analyst might redefine the situa-
tion as independent of the producer’s actions by
focusing solely on the likelihood of weed infestation,
over which the producer likely has no control. But
this definition is economically irrelevant if the ques-
tion is the producer’s response to and damages from

3 . .. . .
Thanks to a reviewer for emphasizing this point.
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weed infestation. The producer is concerned about
the probability of weed damage and the severity of
any realized damage, and in his or her ability to
exercise some control over those events. The pro-
ducer’s risk is endogenous because by expending his
or her valuable resources he or she can influence the
probability that good states of nature occur, and
reduce the severity of the bad state if it does occur.

Introduction of endogenous risk causes several
key interdependencies to come to the fore. Our
results suggest that although increased probability of
loss can reduce herbicide application rates, this is
likely to be offset by a shift towards the use of more
persistent herbicides. For a given set of plausible
conditions, this result can hold even if the probability
of loss is uncertain. While this supports Pannell’s
argument, the result also suggests the use of more
potent herbicides. If self-protection and self-in-
surance are stochastic substitutes, non-point source
pollution policies targeted to reduce herbicide load-
ings can increase the use of more persistent herbi-
cides. Policies that decrease loading by reducing
total mass may induce a substitution to herbicides
more damaging or more likely to be transported to
sensitive areas.

The paper proceeds as follows. Section 2 presents
a model of self-protection and self-insurance given
the probability that a good state is known with
certainty. Section 3 relaxes the assumption of certain
probabilities and explores the restrictions under which
one can unambiguously sign the comparative statics
of increased uncertainty regarding weed control effi-
cacy. We employ the WISH simulation model to test
the plausibility of these alternative restrictions. Fi-
nally, we offer our conclusions in Section 4.

2. Self-insurance and self-protection with certain
probabilities

In the US corn belt, weather uncertainty can lead
to two catastrophic failures in weed control: applica-
tion failure and effectiveness failure. Application
failure occurs when weather conditions prevent the
producer from applying a herbicide; for example,
fields are too wet during the critical application
times. Effectiveness failure occurs when weather
conditions render an applied herbicide completely
ineffective. This occurs if no rain falls after applica-

tion when rain is needed to carry the herbicide into
the soil, or if herbicide effectiveness runs out during
a ““critical period for weed control’’. * In both cases,
weeds will grow unchecked causing a substantial
loss in yield. Zimdahl (1980) cites studies of yield
losses in comn for various weed species at different
weed densities, indicating yield losses of 25-38%
for high weed densities.

Following Archer and Shogren (1994), consider a
risk-neutral farmer who employs herbicides as self-
protection and self-insurance on a per-acre basis to
reduce the probability of application and effective-
ness failures, thereby increasing his expected returns
from crop production. > Let g and H represent
self-protection and self-insurance efforts. Assume
there are two mutually exclusive and jointly exhaus-
tive states of the world—a good state implying no
weed control failure and a bad state implying failure.
The probability that the good state occurs, g(q), is a
function of self-protection, g, where g'(g)> 0.
(Primes denote relevant derivatives.) The bad state
occurs with probability [1 — g(g)].

Self-protection, ¢, is the herbicide type based on
timing of application or herbicide persistence. The
type depends on whether the producer is trying to
reduce application or effectiveness failure. For appli-
cation failure, self-protection is the timing flexibility
of a herbicide. Timing flexibility is quantified as the
length of time during which a herbicide can be
applied and still be effective. Following Bouzaher et
al. (1992), this time period is called the ‘application
window’. For example, atrazine combined with
cyanazine is a common tank mix used to control
weeds in corn. The period from 10 May to 25 May
represents the critical period for a pre-emergence
application of this tank mix in Iowa to achieve full
control of weeds. In contrast, metolachlor and
dicamba is also a pre-emergence tank mix, but the
critical period is reduced to 10 May to 17 May. The
application window for atrazine—cyanazine is 16
days, while the window for metolachlor and dicamba

* See Zimdah! (1980) for a discussion of the ““critical period”.

% The assumption of risk neutrality in weed control has some
empirical support; see Pannell (1991) for a more complete discus-
sion. We assume risk neutrality to simplify the exposition and
focus on technological effects rather than tastes.
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Fig. 1. Cost of application and effectiveness windows for all herbicide strategies applied on reduced tillage and a clay soil. +, contains

atrazine; O, contains other triazines; A , non-triazines.

, joins strategies that provide the longest combined window lengths for a

given cost; — — —, joins most cost-effective strategies that do not contain atrazine; — - —, joins strategies that do not contain triazines. See

text for further details.

is 8 days. The atrazine—cyanazine tank mix repre-
sents a more flexible weed control strategy.

For effectiveness failure, self-protection is the
temporal persistence of a herbicide once applied—the
‘effectiveness window’. For corn herbicides, Bouza-
her et al. (1992) defined effectiveness windows for
two broad categories of weeds: broadleafs and
grasses. The pre-emergence atrazine—cyanazine tank
mix was judged to remain effective on broadleafs for
70 days after application, and on grasses for 50 days.
Metolachlor and dicamba were judged to remain
effective on broadleafs for 20 days after application,
and on grasses for 50 days. For simplicity, we focus
on only one effectiveness window. We can think of
this assumption as modeling a producer who is faced

with an infestation of only one category of weeds
(e.g. grasses only).

Therefore, let g denote the length of the relevant
window, where g is continuous. ® The application
window alters the probability that a farmer can apply
the herbicide, while the effectiveness window influ-
ences the probability that a herbicide is effective

®In reality, choosing a herbicide is a discrete choice, so the
choice of window length is also discrete. To keep this model
mathematically tractable, we assume that the discrete nature of the
problem is not critical and the choices can be approximated by a
continuous variable. This is similar to the assumption made by
Beach and Carlson (1993).
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once applied. For simplicity, we consider the choice
of either an application window or an effectiveness
window only as separate cases. In reality, this may
be a joint decision. Also, in reality, producers have
the option of post-emergence herbicides to control
- weed escapes from previous treatments. While these
possibilities are simulated in the WISH model
{Weather Impact Simulator for Herbicides) devel-
oped by Bouzaher et al. (1992), they add consider-
able complication to the theoretical analysis. We use
the WISH model to provide a simulated estimate of
uncertainty in weed control strategies because of
weather (see Bouzaher et al., 1992, for a detailed
discussion of WISH). The unit cost, c(g), of the
herbicide also depends on g. Assuming that herbi-
cides providing longer effectiveness or application
windows are more expensive, ¢'(g) > 0. 7

Fig. 1 shows a plot of the sum of application and
effectiveness window lengths versus the cost of each
strategy applied on reduced tillage and a clay soil.
Each point on the plot was generated using the
WISH model. The solid line joins strategies that
provide the longest combined window lengths for a
given cost, indicative of the producer’s cost
function. * As window lengths increase, costs in-
crease at an increasing rate. Fig. 1 also illustrates the
effect of banning the use of various herbicides. The
dashed line joins the most cost-effective strategies
that do not contain atrazine. Banning atrazine shifts
the cost curve upwards to the left; producers pay a
higher price to purchase herbicides with equal win-
dow lengths. Also, herbicides with the longest win-
dow lengths are eliminated. Similarly, the dot/dash
line joins strategies that do not contain triazines. A
triazine ban further shifts the cost curve upwards to
the left, increasing the price a producer pays for a
" given window length and restricting the choices to
smaller window lengths.

Self-insurance, H, is the application rate of the
herbicide. Note there is a difference between herbi-
cide self-insurance and the typical notion of self-in-

"If this were not the case, then we would expect a comer
solution with g either at zero or at a technological maximum.

® The solid line is used to highlight these strategies. We are not
implying that a convex combination of these strategies is a
feasible weed control option.

surance. In other discussions of endogenous risk,
self-insurance typically decreases the magnitude of
loss if a failure occurs. This brings the wealth in the
two states closer together by increasing the returns in
the bad state, thereby decreasing income variability.
But, in the herbicide model, yield losses occur in
both the good and bad state: herbicide use only
decreases the magnitude of losses when applied,
corresponding to the good state in our model. Herbi-
cide use drives the states further apart by increasing
returns in the good state, thereby increasing income
variability. The damage in the good state caused by
weed control failure, D{W), is a function of weed
density, W, which is influenced by the level of
self-insurance, H, such that D'(W)W’(H) < 0. This
specification agrees with the observation of Pannell
(1990), that increased herbicide use can increase
income variability, and that herbicides are not risk-
reducing inputs in the traditional economics sense.
The producer maximizes per-acre expected profits
by selecting g and H:
MaxEn
= 2(9)[PYs[1 - D(W) H))] - () H]
+(1-¢(q))[PYo[1 = D(Wo)] — pe(q)H]
(1)
where Y, is weed-free yield and P is crop price. The
parameter p is a binary zero—one variable. Let P = 1
for an effectiveness failure since the producer incurs
a herbicide cost, c(g)H, in both states. Let p = 0 for
an application failure since the producer incurs no
herbicide cost in the bad state. Let the damage,
D(W), be specified as a hyperbolic function (Cou-
sens, 1985; Pannell, 1990):

D(W(H)) = w/[1 + w/(PW(H))] (2)
with weed density, W(H ), specified by:
W(H)=Wye ¥ (3)

where W,, is pretreatment weed density, w is asymp-
totic yield loss, @ is per unit yield loss, and & is a
parameter, The first term in Eq. (1) represents the
producer’s profit if there is no weed control failure;
the second term represents profits with either an
application or an effectiveness failure.

The first-order conditions for an interior maxi-
mum are:

Em, = g'(q){PY,[ D(W,) - D(W)]
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—(1=p)c(q)H}—(q)H

X{p+(1-p)g(q)}=0 (4)
and

Emy = ~g(q) PY,D'(W)W'(H)

—{(1-p)g(g)e(q) +pc(q)} =0  (5)

The second-order conditions require Em,, <0,
Em,, <0, and G=Em,,En, — (Em, ) > 0.

The first term on the right-hand side of Eq. (4)
represents the marginal expected benefit of self-pro-
tection, g, in increasing the probability of successful
weed control. For the application case, the benefits
of reduced damage with a successful herbicide treat-
ment are partially offset by the added cost of a
successful herbicide application. For the effective-
ness case, this offset does not occur since the herbi-
cide is applied in both states. The second term in Eq.
(4) represents the marginal cost of g for the effec-
tiveness case, and it represents the expected marginal
cost of g for the application case.

In Eq. (5), the first term represents the expected
marginal benefit of self-insurance, H, in reducing
crop damage. The second term represents the unit
price of herbicide for the effectiveness case and the
expected unit price of herbicide for the application
case. For the application case we can think of the
herbicide application rate as being decided as it is
applied. In this case, the producer chooses H so the
marginal benefit of H in the good state is equal to
the marginal cost of H in the good state.

Following Hiebert (1983), let g(q) take the form
g(q) = g, + vh(q), with #(g) > 0 and with g° and
<y as positive constants. An increase in the probabil-
ity of a loss is modeled as a decrease in either g° or
y. A decrease in g° represents an increase in the
probability of failure that is independent of window
length. This represents an exogenous change in the
probability of failure that cannot be ameliorated with
self-protection—-a constant increase in the probabil-
ity of a failure for all lengths of the effectiveness or
application window, ¢. In contrast, a decrease in vy
represents an increase in the probability of failure
that increases proportional to g. We can think of it
as a decrease in the efficacy of self-protection. An
example of decreased vy can be seen by comparing
two farmers in two different climates. Suppose for a

herbicide to be potent, rain is required during the

effectiveness window. If one farmer lives in a drier
climate than another farmer, the first farmer will find
a herbicide with a given effectiveness window less
active than that of the second farmer. In this case,
drier climate corresponds to a lower +.

For the application case (p = 0), the comparative
static effects of a decrease in g° are given by
dq°/3g° <0 and 9H * /3g° > 0 (see Appendix A),
which is summarized by the following proposition.

Proposition 1: An increase in the probability of
application failure (p = 0) due to a decrease in the
exogenous probability of success, g° will decrease
the optimal application rate of herbicide use and
increase the length of the optimal application win-
dow.

For the effectiveness case (p=1), 3¢* /3g°< 0
and 3H * /3g° > 0 (see Appendix A). The following
corollary summarizes this result.

Corollary 1: Assuming damage abatement is glob-
ally concave in H, an increase in the probability of
effectiveness failure (p = 1) due to a decrease in the
exogenous probability of success, g°, will decrease
the optimal application rate of herbicide use and
increase the length of the optimal effectiveness win-
dow.

Proposition 1 and Corollary 1 suggest that an
increase in the probability of weed control failure
will result in producers using lower doses of herbi-
cides but with longer effectiveness or application
windows. This may be a mixed blessing for the
control of non-point source pollution from agrichem-
ical use. Reconsider Fig. 1. As window lengths
increase, a producer eliminates the strictly non-tri-
azine activities and begins using only activities that
contain atrazine. In the US corn belt, atrazine is the
most detected herbicide in surface water, ground
water, and precipitation (Goolsby et al., 1991; Holden
and Graham, 1992; Nations and Hallberg, 1992).
Holden and Graham indicate that the frequency of
occurrence of herbicides in ground water is due to
both the likelihood of their use and their persistence
in the soil. Of the soil-applied herbicides used in
corn, atrazine and simazine (a triazine herbicide)
have the longest soil half-lives (Becker et al., 1989).
Although increased application or effectiveness fail-
ure reduces herbicide loadings by decreasing applica-
tion rates, if the herbicide is more persistent, the

potential for non-point source pollution may actually
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increase. The point is that a change in the probability
of weed control failure has an effect on both the
types and quantities of herbicides used, and the
endogenous risk approach allows us to model this
effect. This is important from a non-point pollution
standpoint since levels of non-point pollution and
resulting damages are not only dependent on herbi-
cide quantities, but also on herbicide types. Predict-
ing the specific effect of changes in herbicide quanti-
ties and types on levels of non-point pollution is best
handled using fate and transport models. The
CEEPES modeling system is an example of a practi-
cal use of this approach to link weed control deci-
sions (via WISH) to levels of non-point source pollu-
tion (see Bouzaher et al., 1994).

Note that although Proposition 1 and Corollary 1
give the same result for an exogenous decrease in the
probability of success, the result occurs for different
reasons. In the case of Proposition 1 (application
failure), an exogenous decrease in the probability of
success has the direct effect of decreasing the ex-
pected marginal cost of self-protection, g, thereby
increasing the length of the optimal application win-
dow. Additionally, ¢ and H are stochastic substi-
tutes, inputs where an increase in the optimal level of
one input has the indirect effect of decreasing the
other input. If G is the Hessian matrix of the prob-
lem and G,; are the minors of G, Hiebert (1983)
defines inputs i and | as stochastic substitutes (com-
plements) if G,;<0 (>0). Since g and H are
stochastic substitutes and an exogenous decrease in
the probability of success has the direct effect of
increasing the length of the optimal application win-
dow, this in turn decreases the optimal application
rate. There is no direct effect of an exogenous de-
crease in the probability of a successful application
on the optimal application rate. In the case of Corol-
lary 1 (effectiveness failure), an exogenous decrease
in the probability of success has the direct effect of
reducing the expected marginal benefit of H, thereby
decreasing the optimal application rate. Since g and
H are stochastic substitutes, this in turn increases the
length of the optimal effectiveness window. There is
no direct effect of an exogenous decrease in the
probability a herbicide will be effective on the length
of the optimal effectiveness window.

In addition, knowledge on how an exogenous
increase in the probability of application failure af-

fects the net likelihood of a successful herbicide
application can be useful for non-point pollution
policy. Holding constant parameters such as crop
prices, herbicide prices, and initial weed density, the
effect of an exogenous change in the probability of
application failure on the net likelihood of a success-
ful herbicide application is found by differentiating
g(q*)=g%+yh(q") with respect to g%

dg(q’ dq’
To)=1+vh’(q’)ﬁ (6)

The two terms in Eq. (6) represent two effects—a
direct effect and an indirect effect. The first term in
Eq. (6), which is positive, is the direct effect. This
term shows that a decrease in g° has the direct
effect of decreasing g(g*). The second term is the
indirect effect. Proposition 1 implies that this term is
negative, indicating that a decrease in g° increases
g" and hence has the indirect effect of increasing
g(g ™). The net result depends on which term domi-
nates. If the second term exceeds — 1, an exogenous
increase in the probability of an application failure
reduces the likelihood of success, resulting in lower
doses of herbicide that are more persistent but have a
smaller likelihood of application. If the second term
is less than — 1, it is more likely the producer will
successfully apply the herbicide—an exogenous in-
crease in the probability of an application failure
results in lower doses of herbicides with longer
persistence having a higher likelihood of
application. ° This possibility is somewhat counterin-
tuitive. It says that an exogenous decrease in the
probability of a successful herbicide applicatian may
cause producers to shift to a herbicide with a long
enough application window that the probability of a
successful application actually increases.

Now consider the comparative statics of de-
creased <y on the optimal levels of H and ¢. For the
application case (p=0), 8" /8y >0 and 9H " /dvy
< 0 (see Appendix B), which is summarized below,

Proposition 2: An increase in the probability of an
application failure (p = 0) due to a decrease in the
efficacy of self-protection will increase the optimal

9 By assuming that the model parameters remain constant over
time we have assumed away the effect of weed dynamics on the
frequency of application.
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application rate of herbicide use and decrease the
length of the optimal application window.

The result suggests that a decrease in the efficacy
of self-protection results in herbicides being applied
at higher doses but with shorter application windows.
Again consider Fig. 1. An increase in the probability
of application failure through a reduction in the
efficacy of the application window causes a shift
from right to left going from the region which is
predominantly atrazine and other triazine herbicides
with longer application windows to predominantly
non-triazine herbicides with shorter application win-
dows. Application rates would also increase relative
to the recommended rates.

As illustrated by Propositions 1 and 2, decreasing
g° and vy have the opposite effect on the optimal
values of H and g. This is due to a combination of
three factors. First, the first-order condition, Eq. (5),
implies that the marginal benefit of H in the good
state is equal to the unit price of H in the good state.
This means H ™ is not directly affected by an in-
crease in the probability of failure (Emry 0 = Em, =
0), so H* depends only indirectly on g° or v
through g *. Conversely, ¢~ is directly affected by
an increase in the probability of failure (E7qu0 #0
and quy #+ 0), but since H* is not directly affected
there is no indirect effect of H* on g*. The net
result is that ¢* depends directly on g° or vy, while
H™ depends only on ¢* and on whether ¢ and H
are stochastic substitutes or complements.

Second, Eq. (A4) implies that ¢ and H are
stochastic substitutes, so an increase in the probabil-
ity of failure will shift H* in the opposite direction
to which g* shifts. Intuitively, an increase in g*
increases the unit price of herbicide causing the
producer to apply less, decreasing H *; decreasing
g* decreases the unit price, thereby increasing H *.

Third, examining the first-order condition, Eq.
(4), a decrease in g° or <y decreases the probability a
herbicide will be successfully applied, thereby reduc-
ing the expected marginal cost of g. However, a
decrease in g° leaves the marginal expected benefit
of g unchanged, so the producer finds it optimal to
increase the expenditure on g *. Since g and H are
stochastic substitutes, the producer then reduces the
expenditure on H*. In contrast, a decrease in -y
decreases marginal expected benefits of g. Further-

more, the marginal expected benefit declines faster

than the expected marginal cost, so the producer
finds it optimal to decrease the expenditure on g .
Since g and H are stochastic substitutes, the pro-
ducer then increases the expenditure on H *.

From a policy standpoint, this indicates the impor-
tance of understanding the source of increased prob-
ability of failure to determine its effect on herbicide
use and the relative environmental impacts of herbi-
cide application rates and types of herbicides used.
Suppose we know that a stream flowing through an
agricultural area is a critical wildlife feeding area
and that the aquatic vegetation is sensitive to almost
all types of herbicides. Further suppose that in-
creased herbicide concentrations reaching this area
may cause substantial damage, but a shift in the type
of herbicide that reaches this area will have little
effect. In this case, increased probability of failure
through a reduction in the efficacy of the application
window will result in herbicides being applied at
higher rates, increasing herbicide concentrations in
the stream and increasing the potential for environ-
mental damage. But increased probability of failure
that leaves the efficacy of the application window
unchanged results in herbicides being applied at
lower rates, causing herbicide concentrations and the
potential for damage to decrease.

The effect of a decrease in -y on the probability of
successful application is given by:

P . .
8(a’) _ i 7
dy dy

Here both terms are positive, implying that herbi-
cides will have a lower probability of being applied
when vy decreases. This suggests that herbicides with
shorter application windows will be successfully ap-
plied less often but that when an application occurs it
will be at a higher dose. For the effectiveness case
(p=1),38q"/3y>0and 8H “ /3y >0 if q and H
are stochastic complements (see Appendix B). This
result is summarized below.

Corollary 2: If self-protection and self-insurance
are stochastic complements, an increase in the proba-
bility of effectiveness failure (p = 1) through a de-
crease in the efficacy of self-protection results in a
decrease in both the optimal herbicide rate and the
optimal length of the effectiveness window.

Intuitively, a decrease in the efficacy of self-pro-
tection has the direct effect of decreasing the marginal

(g")+vH(q")
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benefit of self-protection, causing the producer to use
herbicides with a shorter effectiveness window. Also,
a decrease in the efficacy of self-protection has the
direct effect of decreasing the expected marginal
benefit of self-insurance, causing the producer to
apply herbicides at a lower rate. That is, if there is a
higher likelihood that a herbicide will be ineffective,
the producer can reduce the amount of money he
will lose simply by applying less of it. If self-protec-
tion and self-insurance are stochastic complements, a
decrease in one has the indirect effect of decreasing
the other, so both the direct effects and indirect
effects move in the same direction. In this case a
decrease in the efficacy of self-protection decreases
the optimal levels of self-protection and self-in-
surance. However, if self-protection and self-in-
surance are stochastic substitutes, a decrease in one
has the indirect effect of increasing the other. In this
case, unless we can determine whether the direct
effects or the indirect effects dominate, we cannot
sign the effects of a decrease in the efficacy of
self-protection on the optimum levels of self-protec-
tion and self-insurance.

If self-protection and self-insurance are stochastic
complements, increased probability of effectiveness
failure results in herbicides with shorter effectiveness
windows being applied at lower rates. Using Fig. 1,
we would see a shift from atrazine and other triazine
herbicides with longer effectiveness windows to
non-triazine herbicides with shorter effectiveness
windows. We would also see herbicide application
rates decrease relative to the recommended rates.

Note that, although the probability of application
or effectiveness failure is associated with weather
uncertainty, we do not focus specifically on weather
uncertainty. This is what distinguishes the endoge-
nous risk approach from the exogenous risk ap-
proach. We focus on the probabilities that are rele-
vant to the decision-maker (e.g. application and ef-
fectiveness risk) and not on the probabilities that are
independent of human actions (e.g. weather).

If we allow the producer to be risk-averse instead
of risk-neutral, our basic approach remains the same,
except the producer now maximizes expected utility,
where the utility function is concave in profit. Allow-
ing for risk aversion would require us to consider the
effects of self-insurance and self-protection on the
variability of profit as well as expected profit. Recall

that an increase in A increases the variability of
profit, so we should expect herbicide application
rates to be lower for a risk-averse producer than for a
risk-neutral producer. Self-protection, ¢, may in-
crease or decrease the variability of profit depending
on whether the probability of success is low or high.
If the probability of success is close to zero, variabil-
ity of profit is low with the weight of the distribution
largely on the bad state. An increase in g will shift
some weight of the distribution from the bad state to
the good state initially increasing the variability of
profit. However, as ¢ continues to increase, the
weight of the distribution becomes more and more
centered on the good state, decreasing the variability
of profit. In weed control, we generally think of
producers choosing herbicides that have a high prob-
ability of success. In this case we can think of ¢
decreasing variability of profit, so a risk-averse pro-
ducer would tend to use herbicides with longer appli-
cation or effectiveness windows than a risk-neutral
producer.

However, the comparative statics for a risk-averse
producer are more complicated. The addition of a
concave utility function is an additional source of
curvature. We now have to understand how an in-
crease in the probability of failure affects the marginal
productivities of self-insurance and self-protection,
and marginal utilities are also affected. In general,
this additional curvature makes the comparative stat-
ics ambiguous and additional restrictions will be
necessary on the risk-reducing technologies, risk
preferences and their interaction (see Dionne and
Eeckhoudt, 1985, or Shogren and Crocker, 1991).

3. Self-insurance and self-protection with uncer-
tain probabilities

Following the standard literature on endogenous
risk, we have presumed that the producer is certain
of the efficacy of self-protection. However, it is
conceivable that the efficacy of self-protection is
uncertain—the effect of self-protection on the proba-
bility of loss is not known with certainty (Shogren,
1991). In weed control this means that the producer
is not sure how effective added herbicide flexibility
or persistence will be in reducing the probability of a
weed control failure. For example, a producer reads
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in the extension weed control manual that atrazine
should be applied during a particular time period.
But his own past experience or that of his neighbor
calls into question the certainty of that advice. This
doubt can be reflected by the variability of the length
of the application or effectiveness window or can be
manifest in the variability of the efficacy of these
windows. He knows the herbicide can reduce the
probability of failure, but he remains unsure as to the
actual capability of the window length or window
efficacy. Additionally, a producer could be uncertain
as to the efficacy of a weed control strategy applied
to different fields due to differences in organic mat-
ter, capacity to hold moisture during a drought or
hold water after a rain.

We show that if a producer doubts the self-protec-
tion a herbicide provides, it is again possible that he
will increase the use of more persistent herbicides
applied at lower rates. Intuitively, this says that if a
producer is uncertain about how effective a herbicide
is in reducing the probability of a loss he may
respond to this uncertainty by choosing a herbicide
that provides greater application flexibility or is more
persistent.

Consider the problem of choosing the level of
self-protection and self-insurance where the probabil-
ities of each state occurring are uncertain. The
profit-maximizing producer’s problem is:

MaxE# = [*(s(g.€)[ PYo[1 = D(W)] = e(9) H]

+(1-g(g.€)){PY[1 - D(W,)]
—pe(q) H)}dF(e,a) (8)

This problem is identical to Eq. (1) except for the
addition of the random variable €, which enters the
probability function g. Assume that a higher e corre-
sponds to a more favorable outcome, such that g_>
0, and that the marginal effect of e is declining,
8ee <0.

Let F(e,a) represent the subjective cumulative
distribution function for e defined over the interval
[a,b] where a and b are constants. The parameter o
represents the level of uncertainty. An increase in
increases uncertainty measured by second-order
stochastic dominance:

€
['Fu(e.a)dez0ad [F(z,a)de>0  (9)
a a

where the first term in Eq. (9) represents the mean
effect and the second term represents the spread
effect of a on the distribution. This representation of
increased uncertainty includes a mean-preserving
spread as a special case. An increase in « corre-
sponds to a decrease in the expected probability of
success. Formally, the expected probability of no
weed control failure is:

Eg(g.€) = ["2(g.€)dF(e,) (10)

Differentiating Eq. (10) with respect to «, and
integrating by parts twice yields:
9Eg(g.€)

b
o = ~gda.6) [F(e.a)de

+'/;bg“(q,e)['/:Fa(z,a)dz]de<0
(11)

Increasing o also corresponds to increasing the
variance of g(g,e), where the variance is given by:

Var| g(g,€)] =fabg(q,6)2dF(€,a)

—[ng<q,e)dF<e,a) (12)

Differentiating Eq. (12) with respect to «, and
integrating each term by parts twice, and rearrang-
ing, gives:

aVar| g(q.€)]
Ja

=25(g.)[1-5(g.6)] [ Fo(e.a)de
+fab{2g3— 28.[1-8(g.6)])

X fFa(z,a)dz]de (13)
a

Intuitively, € can reflect producer uncertainty
about the length of the application or effectiveness
window. For uncertain window length, write g(g,¢)
as g(g+e€). The producer believes the window
length is likely to be g, but it may be a few days
longer or a few days shorter. An increase in «o
implies that the length of the window is more vari-

able, while the expected window length may be
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either constant or decreasing. Alternatively, € can
represent uncertainty in the efficacy of the applica-
tion or effectiveness window. For uncertain window
efficacy, write g(g,e) as g(ge). The producer be-
lieves the window length is likely to contribute a set
amount to the probability of success but is not sure
exactly what this set amount is. Now increasing a
implies an increase in the variability of efficacy,
while the expected efficacy of the window may be
constant or decreasing. After defining the general
model and comparative statics, we will consider both
of these cases to illustrate the effects of increased
uncertainty on the optimal weed control decision.
The first-order conditions for Eq. (8) are:

57, ["{2,(4.€) PYal (W) ~D(W)]

—(1-p)H{g,(g.€)c(q) +g(q.€)(q)}
—pc’(q)H}dF(e,a)=O (14)

and
By = [~ 8(q.€) PYoD (W)W'(H)

—(1-p)g(g.€)c(q)
- pe(q)dF(€,@) =0 (15)

The second-order conditions require Er,,, <0,
E#,, <0 and EG = E#,,E7 6 - (E,, —
(Efry,)* > 0.

The comparative statics of an increase in uncer-
tainty for the application case (p = 0) are given by
8g* /8a>0 and 8H */da <0 (see Appendix C),
which is summarized by the following proposition.

Proposition 3: Assuming g, <0 and g . >0,
an increase in application uncertainty (p=0) de-
creases the optimal herbicide application rate and
increases the length of the optimal application win-
dow.

If g,,<0 and g, > 0, uncertainty causes pro-
ducers to use herbicides with a higher probability of
being applied than those they would use in the
absence of uncertainty. It also causes producers to
apply more expensive herbicides than they would
use in the absence of uncertainty.

Similarly, for the effectiveness case (p=1), if
damage abatement is globally concave in H, then
dg " /8a >0 and 0H * /3o < 0. This result is sum-
marized below.

Corollary 3: Assuming g, <0 and g, > 0 and
that damage abatement is globally concave in self-in-
surance, A, an increase in effectiveness uncertainty
(p=1) decreases the optimal herbicide application
rate and increases the length of the optimal applica-
tion window.

If g,,<0, g,>0 and damage abatement is
globally concave in H, uncertainty causes producers
to use herbicides that have a higher probability of
being effective than those they would use in the
absence of uncertainty. In this case, although uncer-
tainty tends to decrease the optimal herbicide appli-
cation rate, it leads to more flexible and persistent
herbicides. Note that Proposition 3 and Corollary 3
are similar to Proposition 1 and Corollary 1. This is
not too surprising since an increase in application or
effectiveness uncertainty reduces the expected proba-
bility of success, which is the effect we considered in
the certain efficacy case. Similar to the problem of
self-insurance and self-protection with certain effi-
cacy, an increase in application uncertainty has no
direct effect on herbicide application rates since this
decision occurs as the herbicide is being applied.
Also similar is that an increase in effectiveness
uncertainty has the direct effect of increasing the
probability a herbicide application will be wasted
thereby decreasing the amount of herbicide applied.
Both the certain and uncertain efficacy cases also
require restrictions on the curvature of the probabil-
ity functions to achieve this result. While we as-
sumed a specific functional form for the certainty
case, we consider a more general probability func-
tion for the uncertainty case. The conditions g, <0
and g, > 0 imply that g, is decreasing or constant
and is convex in €. Intuitively, this means self-pro-
tection is less effective in shifting the probability of
success as € increases, but this decrease in effective-
ness diminishes as € increases. This has different
implications for the shape of g(q.e) depending on
how € enters the model. We now consider the impli-
cations of both uncertain window length and effi-
cacy.

3.1. Uncertain window length

Consider the case of uncertain window length
represented by g(g,€)=g(g+€). In this case,



114 D.W. Archer, J.F. Shogren / Agricultural Economics 14 (1996) 103—122

8,(qg+e)=g"(g+e) and g, (qg+e)=g"(qg+
€). If we think of g(g,€) as a cumulative distribution
function, the condition g, < 0 implies that the prob-
ability distribution function, g'(g+ €), is non-in-
creasing which is guaranteed by our assumption that
8 <0. The condition g, > 0 implies the probabil-
ity distribution function is a convex function. Using
a parallel argument to the idea of non-increasing
Arrow—Pratt absolute risk aversion, Shogren (1991)
shows that g"'(g + €) > 0 if we assume non-increas-
ing aversion to uncertain protection efficiency. That
is, the marginal efficacy of the probability function is
convex if a producer’s willingness to pay a protec-
tion premium decreases monotonically with the level
of self-protection. A protection premium is defined
as the amount an individual is willing to pay to
remove the uncertainty about the efficacy of self-pro-
tection (see Shogren, 1991, Proposition 2).

For g(g,e)=g(q+ €), distributions that meet
both the conditions g, <0 and g, > 0 include the
exponential and Pareto distributions. Intuitively, the
exponential distribution makes sense for the applica-
tion uncertainty model since the probability of suc-
cessful application can be described as a waiting
time problem. For the application problem, success
occurs when weather conditions permit an applica-
tion. Let 6 represent the probability of a successful
application occurring during an interval ¢ + At. Fol-
lowing Freund and Walpole (1980), if the probability
of more than one success during that interval is
negligible and the probability of success during such
an interval does not depend on what happened before
t, then the probability of zero successes during an
interval of length ¢ + e is given by e ®“* <) The
probability of at least one success during interval
q + € is then the exponential cumulative distribution
function 1 — e 84" ),

We use the WISH model to explore the relation-
ship between the length of the primary application
window and the probability that a herbicide is suc-
cessfully applied. Let € =0 represent the weed con-
trol strategies as defined by Bouzaher et al. (1992).
We modify each strategy by adding or subtracting
days from the window lengths defined in WISH and
rerunning the simulation. For example, € = 1 repre-
sents adding 1 day to the application window, and
€ = — | represents subtracting 1 day from the appli-
cation window. With the new values generated with

Table |
Uncertain window length: estimated probability function coeffi-
cients

Soil type: sand (n=35)  Soil type: clay (n = 35)

Linear Exponential  Linear Exponential

B, 0.1128 0.0753 0.0680 0.0442
(0.0194)  (0.0244) (0.0133)  (0.0164)

B, 0.0226 —0.0470 0.0196 —-0.0338
(0.0010)  (0.0014) (0.0007)  (0.0009)

B, 0.0073 —0.0147 0.0067 ~0.0116
(0.0009)  (0.0015) (0.0006)  (0.0009)

R? 0.9465 NA 0.9656 NA

MSE 000095  0.00048 0.00045  0.00029

Standard errors are given in parentheses.

WISH, we estimate coefficients for both a linear and
an exponential model. The linear model is given by:

g(g+e)=PBy+Bi(qg+e)+p,d(q+e) (16)
where d, is a dummy variable for application timing.
Let d, = 0 represent early preplant applications and
d, =1 represent pre-emergence applications. Simi-
larly, the exponential model is given by:

g(q-f-e): 1 _eBo+Bl((l+f)+ﬁzd)(‘l+5) (17)

where d, is defined as in the linear model.

Separate models were fit for sand and clay soil
types. Table 1 presents the results for both models.
Numbers in parentheses are the standard errors. Both
models provide a good fit for the data. The assump-
tion that g, > 0 and g, > 0 imply that B, + B,d, >0
for the linear model and B, + B, 4, <0 for the expo-
nential model. For the linear model, B, represents
the marginal effect of the early preplant window
length on the probability of a successful application.
The estimated 3, for a sandy soil in the linear model
is 0.0226, indicating that each additional day added
to the early preplant window length increases the
probability of a successful application by 2.26%.
Similarly, for a clay soil, each additional day added
to the early preplant application window increases
the probability of a successful application by 1.96%.
Also for the linear model 3, + 3, represents the
marginal effect of the pre-emergence window length
on the probability of a successful application. Each
additional day added to the pre-emergence applica-
tion window increases the probability of a successful

application by 2.99% for a sandy soil, and 2.63% for
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a clay soil. The coefficient B, represents the proba-
bility of successful application that is not affected by
window length. Regardless of window length, there
is at least an 11.28% probability of successful appli-
cation on sandy soils and at least a 6.80% probability
of successful application on clay soils. For the expo-
nential model, —B,(ePo*Bila*€)) represents the
marginal effect of the early preplant application win-
dow length on the probability of a successful appli-
cation and —( B, + B,)e Pt Pilar )t Falat e)y repre.
sents the marginal effect of pre-emergence applica-
tion window length on the probability of a successful
application. Unlike the linear model, these marginal
effects are not constant.

The estimated coefficients for both the linear and
non-linear models all have the appropriate sign. Also,
as expected for a probability function, neither of the
estimated functions has a range outside the interval
[0,1] over the domain of data from which they were
estimated. Although there is little evidence to select
the exponential over the linear model, theretis no
evidence to reject it either. If the exponential model
provides the best fit, then Proposition 3 holds unam-
biguously. But if the linear model provides a better
fit, then from Eq. (C6) we can see that most of the
terms disappear due t0 g, =g, = g.=0. The
only remaining effect is the mean effect, which
implies:

Efye=c(q)Hs () [ Fode 0 (18)

Therefore, this implies that, for all but a mean-
preserving spread, the implications of Proposition 3
hold unambiguously. ' This suggests that the main
effect of increased uncertainty will occur from a
change in the mean of the distribution rather than
from the spread of the distribution for uncertain
window length.

If a producer is uncertain about the window length
associated with different herbicides, increased uncer-
tainty is likely to lead to reduced herbicide applica-
tion rates and to use of herbicides with longer appli-
cation or effectiveness windows. From an environ-
mental standpoint, when herbicides are successfully

A mean-preserving spread implies that E7,, = 0. Therefore,
dq* /8 =0 and 8H"* /da = 0.

applied we have lower loadings of more persistent
herbicides. Also, since herbicides with longer appli-
cation windows have a higher probability of success-
ful application, uncertainty in window length tends
to increase the likelihood that herbicides will be
applied.

3.2. Uncertain window efficacy

Now consider uncertain window efficacy repre-
sented by g(g,€)=g(ge). In this case, g =
g"(ge)ge + g'(ge) and g, = g"(ge)g’ +
2g"(gqe)q. Now g, <0 if and only if
—g"(ge)ge/g'(ge) = 1. The term m(ge) =
—g"(ge)qe/g'(ge) is the elasticity of the marginal
probability of success. Similar to Shogren (1991), we
might think of m as a measure of relative aversion to
uncertain protection efficiency. For a simple self-pro-
tection problem, m indicates the size of a multiplica-
tive protection premium.

A sufficient condition for g, <0 is for the prob-
ability density function, g'(ge), to always be elastic.
Lichtenberg and Zilberman (1986) suggest that this
is a reasonable assumption for a probability density
function for damage control problems. For common
distributions including many gamma, exponential,
and Pareto distributions, g'(ge) is elastic if ge is
bounded sufficiently far from zero. Arrow (1984)
shows that relative risk aversion tends to a limit
below one as wealth approaches zero. Similarly, 7
approaches a limit below one as ge approaches zero,
implying that we need to restrict ge away from zero
if we want to maintain n > 1.

This bound, m > 1, may be very restrictive for
some distributions and may impose little restriction
for others. For example, consider the Pareto distribu-
tion g(ge)=1—(k/(qe))? for ge = k>0 and 6 >
0. The elasticity of the marginal probability of suc-
cess is 7= 6+ 1> 1. Requiring m > 1 places no
additional restrictions on ge. Alternatively, consider
the exponential distribution g(ge)=1—e~99 for
ge >0 and 06> 0. The elasticity of the marginal
probability of success is n(ge) = Hge. Requiring
m > 1 implies that ge > 1 /0, which in turn implies
that g(g*e)=1—e ! =0.632 for all € in [a,b].
Now we can guarantee that g <0 only if the
producer chooses an optimal window length certain
to result in at least a 63% probability of success.
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Fig. 2. Restrictions on uncertain window efficacy to unambigu-
ously sign Proposition 3 and Corollary 3.

Consider now the restriction g, > 0. Assuming
g"(ge)<0and g” #0, then g . > O if and only if
—g""(qe)qe/g"(ge) > 2. Again this holds for many
distributions if ge is bounded away from zero. This
imposes no further restrictions on a Pareto distribu-
tion, but for an exponential distribution it implies
that ge>2/0. In this case, g(g'e)>1—-e ? =
0.865, so we can guarantee that g, > only if the
producer chooses an optimal window length that he
is certain will result in at least an 87% probability of
success. In general:

?

—g"(q€)qe n'qe€
TN g 2 (19)
g"(qe) U]

then —g'"(qe)ge/g"(ge) > 2 if and only if [1 + 5
—-(n'qe)/n]> 2.

Fig. 2 illustrates the regions in which we can
unambiguously sign Proposition 3 and Corollary 3
for uncertain window efficacy. The elasticity of
self-protection is represented on the horizontal axis,
while the relative marginal elasticity (v ge) is repre-
sented on the vertical. Regions I and III represent the

cases that violate either of the two restrictions n > 1
or [1 + n—(n'qe)/m] > 2. Region II represents the
cases that satisfy both restrictions. If w'ge lies en-
tirely in Region II for all € in [a,b], our results hold.
Assuming m > 1, a sufficient condition for
—g"(ge)qe/g"(ge) > 2 is v <0, implying rge
at the optimum lies entirely in Region IIb where the
probability is elastic, and the elasticity is decreasing.
This is the most restrictive set of sufficient condi-
tions. We can weaken these restrictions by allowing
the elasticity to increase, but at a slow enough rate to
stay in Region Ila. In addition, if we consider a
mean-preserving spread in € such that:

['Fy(e.a)de=0 (20)

then the mean effect in Eq. (C6) disappears, and we
no longer require m > 1. Therefore, our results hold
if mge lies entirely in Regions II and III for all € in
[a,b]. Eliminating the mean effect removes the re-
striction that the elasticity must exceed unity, thereby
increasing the likelihood that Proposition 3 and
Corollary 3 hold. In general, sufficient conditions to
sign the effects of increased uncertainty on ¢~ and
H* are that the marginal productivity of success is
elastic and the elasticity is non-increasing in ge over
the interval [¢g*a,q " b].

Again using the weed control strategies from the
WISH model, we model uncertain window efficacy
as uncertainty in the amount of crop land that can be
treated in a day. Let € represent the percentage of
land that can be treated in 1 day. For example, if a
producer requires 4 days to treat all of his corn acres,
then € = 0.25. With the values generated by WISH,
we estimated - coefficients for a linear model, an
exponential model, and a Pareto model. Observations
were generated for € = 0.1665, € =0.2, € =0.25,
€ =0.333, and € = 0.5, covering producers requiring
from 2 to 6 days to apply herbicides to all of their
comn acres. In this specification the product ge repre-
sents the maximum treatment percent, i.e. is the
percentage of acreage that could be treated if there
were no weather delays.

We use dummy variables to represent alternative
timings in both the linear and exponential models,
with the linear model given by:

g(qe)=Bo+qu€+Bzd|qe+Bsdzqe (21)
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Table 2
Uncertain window efficacy: estimated probability function coeffi-
cients

Soil type: sand (n = 40)  Soil type: clay (n = 40)

Linear Exponential ~ Linear Exponential
By 0.2652 0.0720 0.1750 0.0341
(0.0255)  (0.0316) (0.0198)  (0.0244)
B, 0.0550 —-0.1810 0.0527 —-0.1279
(0.0045)  (0.0078) (0.0035)  (0.0056)
B, 0.0137 —0.0550 0.0149 —0.0407
(0.0068)  (0.0096) (0.0052)  (0.0073)
B, 0.0248 —0.0949 0.0242 —0.0652
(0.0046)  (0.0086) (0.0036)  (0.0061)
R? 0.8601 NA 0.9040 NA
MSE 000520  0.00116 0.00314  0.00112

Standard errors are given in parentheses.

and the exponential model given by:
g(qe) =1- eﬁ0+ﬁ,qe+ﬁzd,qe+ﬁ3dzqe (22)

In both models let d, = O represent early preplant
and post-emergence applications and d;, =1 repre-
sent pre-emergence applications. Also, let d, =0
represent early preplant and pre-emergence applica-
tions and d, =1 represent post-emergence applica-
tions. We also estimate separate models for each
timing with the Pareto specification:

Bo

g(ge) =1~ (23)

B, tqe

where 3, > 0 and B, + ge > K. After testing alterna-
tive specifications, the parameter K was set at the
smallest observed ge value for each timing,

Table 3

Uncertain window efficacy: estimated Pareto distribution coefficients

Tables 2 and 3 show the results for the linear and
exponential models, and the Pareto models. The
assumption that g, >0 and g, > 0 imply that B8, +
B,de+Byd,e>0 and B, +B,d,q + PB;d,q>0
for the linear model, and that B, + B, d e + B;d,¢€
<0 and B, +B,d,q+ B,d,q <O for the exponen-
tial model. Also, these assumptions imply that B, > 0
for the Pareto model. With the linear model, 3,
represents the marginal effect of changing the maxi-
mum early preplant treatment percentage (i.e. using
larger equipment, working longer days, or driving
faster) on the probability of a successful application.
Similarly, B, + B, represents the marginal effect of
changing maximum pre-emergence treatment per-
centage on the probability of successful application,
and 3, + B represents the marginal effect of chang-
ing maximum post-emergence treatment percentage
on the probability of a successful application. For the
estimated coefficients on a sandy soil each percent
increase in maximum treated acres increases the
probability of a successful application by 5.50% for
early preplant applications, 6.87% for pre-emergence
applications, and 7.98% for post-emergence applica-
tions. For the estimated coefficients on a clay soil
each percent increase in maximum treated acres in-
creases the probability of a successful application by
5.27% for early preplant applications, 6.76% for
pre-emergence applications, and 7.69% for post-
emergence applications. Also for the linear model,
the coefficient B, represents the probability of suc-
cessful application that is independent of the maxi-
mum treatment percentage. For a sandy soil, there is
at least a 26.52% probability of successful applica-
tion, and for a clay soil there is at least a 17.50%

Soil type by application timing

Sand Clay
Early preplant Pre-emergence Post-emergence Early preplant Pre-emergence Post-emergence
(n=15 (n=10) (n=15) (n=15) (n=10) (n=15)

Bo 1.2286 0.7370 1.4965 09115 0.5567 1.0857
(0.0603) (0.0329) (.0817) (0.0603) (0.0261) (0.0636)

B, 2.1334 0.4279 1.2375 2.0928 0.4216 1.2032
(0.1941) (0.0857) (.1146) (0.1469) (0.1003) (0.1416)

MSE 0.00129 0.00109 .00201 0.00063 0.00106 0.00253

Standard errors are given in parentheses.
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probability of successful application. With the expo-
nential model - (8, + B,d, +

B}dz)(eBo+B](llf)+/32‘]|(llf)+B.\dz((lf)) represents the
marginal effect of maximum treatment percentage on
the probability of a successful application. Unlike the
linear model, this effect is not constant, but it is
positive as expected for all herbicide timings. With
the Pareto model B,KP( B, +qe)~'"Fo) repre-
sents the marginal effect of maximum treatment
percentage on the probability of a successful applica-
tion. Again unlike the linear model this effect is not
constant, but the effect is positive as expected for all
herbicide timings and soil types. The estimated coef-
ficients for all of the models have the appropriate
sign. As expected for a probability function, none of
the estimated functions has a range outside the inter-
val [0,1] over the domain of data from which they
were estimated. Although the R? values for the
linear model are large, residual plots indicate that the
linear model does not fit the data as well as the
exponential model. Similarly, residual plots indicate
that the Pareto models do not give as good a fit as
the exponential model. However, given the small
number of observations used to estimate the Pareto
models it is difficult to make a conclusive judgment.

Recall that if the Pareto model holds, we can
unambiguously conclude that Proposition 3 holds,
i.e.9g” /3a > 0 and 8H * /3o < O for all application
timings and soil types. If the exponential model
holds, however, we need to satisfy two conditions to
make these predictions, i.e. m > 1 and
—g"(qe)qe/g"(qe) > 2. For the exponential
model, n= —(B, + B,d, + B;d,)qe and
—g"(qe)qe/g"(qe) = —(B, + Byd, + Bydy)qe.
Given our estimates, the condition v > 1 requires
q" > 33.2 for early preplant applications on sand,
g~ > 25.5 for pre-emergence applications on sand,
and ¢g* > 21.8 for post-emergence applications on
sand. On clay, the condition requires ¢* > 47.0,
q" > 35.6,and ¢" > 31.1 for the respective timings.
Since 8 < g < 25 for the strategies defined in WISH,
the condition m> 1 can only be satisfied for post-
emergence applications on sand.

The second condition —g"'(ge)ge/g"(ge) > 2
requires g~ > 66.4, ¢* > 509, and ¢~ > 43.5 for
early preplant, pre-emergence, and post-emergence
applications on sand, and ¢~ > 939, ¢~ > 71.2, and
q" > 62.2 for the respective timings on clay. This

condition is not satisfied for any timing or soil type.
Therefore, even if the exponential model holds, it is
possible that the opposite result predicted by Propo-
sition 3 occurs, i.e. 8¢ " /9 <0 and 3H * /3a > 0.

These results lead to two observations. First, as
do those of Lichtenberg and Zilberman (1986), our
findings reinforce the importance of functional form.
At present, more field data are needed to determine
the most appropriate functional form for uncertain
window efficacy. Second, our findings support the
importance of two theoretical constraints paralleling
the observations of Arrow (1984) on relative risk
aversion. We can show that m approaches a limit
below unity as ge approaches zero and that = ap-
proaches a limit above unity as ge approaches infin-
ity. This indicates that the conditions m > 1 and
1/ <0 are violated for some ge in the interval
0 < ge <. Our exponential model shows that these
theoretical constraints are binding over the relatively
small interval aq” < ge < bg™, where a=0.1665
and b =0.5.

In sum, for certain probability functions, we can
conclude that uncertainty about self-protection will
lead to herbicides with longer application or effec-
tiveness windows being used at lower application
rates. Again this implies lower loadings of more
persistent herbicides when an application occurs, but
it also implies a greater probability of successful
application. However, these results are less convinc-
ing in the uncertain window efficacy specification
than in the uncertain window length specification.

Again, if we drop the assumption of risk neutral-
ity, and allow for risk-averse producers, the results
are still complicated by the necessity to consider
effects of self-protection and self-insurance on the
variability of profit as well as expected profit. The
net result depends on the relative curvature in the
utility function compared to curvature in the profit
function. As before, the direction of the comparative
statics for a risk-averse producer are more difficult to
determine due to the interaction of tastes and tech-
nology (Babcock and Shogren, 1995).

4. Conclusion

The concept of endogenous risk allows us to
escape the simplified assumption that the likelihood
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of weed damage is beyond the control of a producer.
As a result this approach provides a theoretical
framework to capture some of the complexity in-
volved in weed control decisions, and particularly to
model decisions involving herbicide types as well as
herbicide quantities.

Endogenous risk in weed control management
reveals two key points—a clear trade-off between
the herbicide application rate and flexibility or per-
sistence, and the idea that the source of a probability
change affects this trade-off. First, a policy-maker
concerned with non-point source pollution must un-
derstand the trade-off between the type and quantity
of herbicides used. Policies that reduce loadings
because they reduce total mass may induce substitu-
tion to chemicals more damaging or more likely to
be transported to sensitive areas (e.g. low-dose sul-
fonylureas such as nicosulfuron and primisulfuron).
This point is supported by Wagenet and Hutson
(1991) who indicate that the fate and transport of
pesticides in the soil depend on specific character-
istics such as persistence and total mass. Our en-
dogenous risk framework captures the mechanisms
behind this trade-off.

Second, different sources for changes in probabil-
ity have different implications for weed control. An
increase in the exogenous probability of loss—prob-
ability that cannot be ameliorated by self-protection
—will decrease application rates and increase persis-
tence. Similarly, uncertain window length will de-
crease rates and increase persistence. In contrast, a
decrease in the efficacy of self-protection will de-
crease persistence and may increase application rates.
Finally, for uncertain window efficacy, definitive
predictions are difficult to guarantee. Based on the
elasticity of the probability function, we provide a
set of conditions to unambiguously sign the effects
of uncertain window efficacy, but our empirical re-
sults reveal a need for additional field data to deter-
mine conclusively whether these conditions are satis-
fied.

There are several extensions to our model that
may prove useful. The first is determining the rela-
tive importance of risk-reducing technologies and
risk preferences on weed control strategies. By fo-
cusing on risk-neutral producers we were better able
to see the technological effects of herbicide use on
weed contro] decisions. There needs to be further

empirical work to determine the importance of these
technological considerations relative to taste consid-
erations embodied in risk aversion (see Babcock and
Shogren, 1995). Second, our model did not consider
the market effects of policy decisions. This may be
realistic for policies targeted to limited areas where
shifts in herbicide use might not be expected to have
an effect on herbicide and crop prices. However,
large-scale policies such as nationwide bans of key
herbicides such as atrazine may have significant
effects on crop prices and the prices of other herbi-
cides. Third, our model considered a single herbicide
treatment. In reality, producers generally have the
option of treating herbicide escapes with additional
herbicides or cultivation. The availability of treat-
ments for weed escapes may have a significant effect
on both the quantities and types of herbicides used.
This remains to be determined.

We conclude by stressing our main point. In
general, self-protection and self-insurance in weed
control can be viewed as stochastic substitutes.
Therefore, non-point source pollution policies aimed
at restricting one will likely increase the other. Fur-
thermore, we know that increases in the probability
of application failure will lead to a trade-off between
herbicide rates and persistence. The net environmen-
tal effect will depend on the relative importance of
herbicide loadings and persistence, a remaining ques-
tion to be addressed by integrated environmental
economic models (e.g. CEEPES) that include fate-
and-transport systems.
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Appendix A

The comparative static effects of a decrease in g°
representing increased probability of application or
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effectiveness failure are:

aq*

Tg" = [EarqgoEar,,H + EaTHgoEqu]/G (Al)
and

oH *

750 =[Em, 0Em,, + Em, oEm,]|/G (A2)

The first two terms on the right-hand side of Eq.
(A1) represent the direct effects of a change in the
probability of failure on ¢g*, while the second two
terms are the indirect effect on ¢ * through a change
in H". Similarly, the first two terms and the second
two terms in Eq. (A2) are the direct and indirect
effects of a change in the probability of failure on
H*. The sign of Em_, defines whether the inputs
are stochastic substitutes or stochastic complements.
If G is the Hessian matrix of the problem and G;; are
the minors of G, Hiebert (1983) defines inputs i and
Jj as stochastic substitutes (complements) if G; ;<0
(> 0). In our model, stochastic substitutes are inputs
where an increase in the optimal level of one input
has the indirect effect of decreasing the optimal level
of the other input. Stochastic complements are inputs
where an increase in one input indirectly increases
the other input.

To determine the effect of a change in the proba-
bility of failure on the optimal window length and
application rate, we need to sign all of the terms in
Egs. (A1) and (A2). Using the first-order condition,
Eq. (5), Emy, =0, we know:

Emy,0o=—PY,D'(W)W'(H)—(1-p)c(q)
(A3)
Additionally, using the first-order condition, Eqg.
(4), Em, =0, we can write:
Em,y=—g(q)PY, D'(W)W(H)-(1-m)
x[g'(q)c(q) +g(q) ()] —pd(q)
=-(1-p)g(q)c(q) —pg'(q)PY,

X M +D'(W)W'(H)

(A4)

Using the first-order condition, Eq. (4), Emr, =0,
and given c'(g) > 0, we also know:

Emypo=—(1-p)c(q)H (AS)

Thus, for the application case (p = 0), Emrj; 0 =0,
Em,, <0, and Em o <0. Assuming second-order
conditions hold, 3¢~ /3g° < 0 and 0H * /3g° > 0.

For the effectiveness case (p = 1), Emy .0 > 0 and
Em, 0 =0, but the sign of Em_, is ambiguous. If
herbicide use is considered damage abatement, the
term [D(W,) — D(W)]/H represents average dam-
age abatement, and the term —D'(W)W'(H ) repre-
sents marginal damage abatement. In general, al-
though we cannot determine which term is larger, if
we assume abatement is always concave in H, then
average abatement exceeds marginal abatement, im-
plying Em_,, <0 and 3g* /8g° <0 and 8H * /3g° >
0.

Appendix B
A decrease in vy increases the probability of fail-

ure by reducing the efficacy of self-protection such
that:

aq”

_‘97 B [—EWIP/EWHH + E7TH7E7TH4]/G (Bl)
and

oH*

T = [_Eﬂ'ﬂy Em,, + quvEﬂ'Ha]/G (B2)

Differentiating Em,, and Em, with respect to vy
yields:

Emy, = —h(q)PY,D'(W)W'(H)
—(1=-p)h(q)c(q) (B3)

and using E'nq=0, yields:

Er,, = H(q) PYo[ D(Wy) = D(W)] - (1 = p) H
X[#(q)c(q) +h(q)c'(q)]

(1-p)g°(q)H
Y

+ p[ H(q) PY,[ D(W,) = D(W)]] >0

(B4)

For the application case (p = 0), given Em, =0,
then Ew, = 0. Assuming second-order conditions
hold and noting that Em,, >0 from Eq. (B4) and
Em , <0 from Eq. (A4), then 8¢ /3y >0 and
o0H " /3y <0.



D.W. Archer, J.F. Shogren / Agricultural Economics 14 (1996) 103-122 121

For the effectiveness case (p = 1), Egs. (B3) and
(B4) imply E«ry. >0 and E1r, > 0, while the sign
of Em,, is ambiguous. If we assume damage abate-
ment is globally concave in H, then Er , <0, and
the signs of d¢* /8y and 0H * /0y remain ambigu-

. ous. But if ¢ and H are stochastic complements,

which implies that Em , > 0, then 3¢ * /3y > 0 and
o0H * /9y > 0. Note that, for application failure, a

, decrease in the efficacy of self-protection has a

direct effect on ¢ but no direct effect on H*.
Alternatively, for effectiveness failure, a decrease in
the efficacy of self-protection has a direct effect on
both ¢ and H".

Appendix C

The comparative statics of an increase in uncer-
tainty on ¢ and H* are given by:

dq”

—— = [~ E#, By, + By By, | /BG (C1)
and

oH " o o

o [_EW”“EW40+EanEWqH]/EG (C2)

Assuming the second-order conditions hold, we
need to sign E#y,, E7y,, = E7,,, and E7,, to sign
Egs. (C1) and (C2). Consider each in turn. Differen-
tiating E#r,, with respect to «, integrating by parts
twice, using Eq. (14), and assuming Eg(g.e) # 0,
yields:

Effya = = %{ge(%e)fa”a(e,a)
—f:gee(q,e)[f;Fa(z,a)dz]de} <0

)

For application uncertainty (p =0), E#,, =0.
For effectiveness uncertainty (p = 1), E#,,, <O0.

The cross-effect term, E7, o for application un-
certainty (p = 0), is given by:

By, = — [ ¢(q)8(q.€)dF (e.2) <0 (C4)

This result, combined with the observation that
Er,, = 0 for application uncertainty, implies that a

change in uncertainty regarding the probability of a
successful application will cause ¢* and H” to
move in opposite directions. Producers who face
greater application uncertainty will either choose
herbicides with longer application windows and ap-
ply them at lower rates, or choose herbicides with
shorter application windows and apply them at higher
rates.

For effectiveness uncertainty (p = 1), using Eq.
(14) we can write the cross-effect term as:

D(Wo) —D(W)

E’Tqu=PY0[ +D'(W)W'(H)

x [*s,(4.€)dF(e.a) (CS)

The second-order condition Ery,, <0 requires
damage abatement to be locally concave in H. If we
assume damage abatement is globally concave in H,
average abatement exceeds marginal abatement, im-
plying E7r,,, <0. Recognizing that Er;, < 0 is again
useful for policy analysis. The negative cross-term
effect indicates that producers see herbicide applica-
tion rates and herbicide persistence as stochastic
substitutes. Therefore, a policy designed to restrict
herbicide application rates should result in the use of
more persistent herbicides. A policy designed to
restrict persistence should be expected to induce
higher application rates.

Differentiating E7, with respect to a, integrating
by parts twice, using Eq. (13), and assuming
Eg (g.€) # 0 yields:

(1-p)Eg(-) +p
qu(')

Eﬁqa=0’(q)H[— 8qe()

+(1 —p)gf(')}beFm(e.a)a’6

8gee( )

a

b (1-p)Eg(:) +p
+f| Eg,(+)

—(l—p)ga(')}

x[f:Fa(z,a)dz]de (C6)
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In general, the sign of E7,, is ambiguous. But if

8,<0and g, >0, then E7,, > 0 for both cases
of application and effectiveness uncertainty.

Given Egs. (C3), (C4) and (C6), if g, <0, g,
>0 and p =0, then 3¢~ /9a > 0 and 8H * /9a < 0.
Similarly, given Egs. (C3), (C5) and (C6), if g, <0,
8gee > 0. p=1, and damage abatement is globally
concave in H, then 8¢~ /da > 0 and 8H " /9a < 0.
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